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Abstract

A thermodynamically related continuum model developed for describing elastic rubber-like behavior of amorphous and crystallizing
polymers is exemplified for simple extension. This model is based on a new concept of extendable dynamic segment (DS) whose unperturbed
size is roughly evaluated for several polymers. The extension of the DS’s hinders the cooperative rotations of monomer groups and
contributes to the internal energy of chains. Therefore, in description of macroscopic elastic rubber deformation, this approach takes into
account the motions of chains caused by both the entropy and internal energy. The model displays a continuous transition from entropy to
energetic elasticity, without common singularity related to finite extensibility of polymer chains. A multi-scale molecular approach, based on
the concept of extendable DS’s, has been employed for evaluations of continuum parameters. In case of crystallizing polymers, a simple
model is developed for the strain-induced crystallization based on local calculations of energetic gain caused by the formation of needle-like
(NL) crystals. Then the strain-induced crystallization for a crystallizing rubber is described on continuum level taken into account the

reinforcement effects of emerging NL crystals.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Amorphous and crystallizing polymers demonstrate
different types of mechanical and optical behavior above
T,. The amorphous polymers display the rubber-like
behavior in both the cross-linked and not cross-linked
states, the latter just above T,. In case of cross-linked
rubbers, the importance of energetic component of
deformation has been discussed long ago (e.g. see Ref.
[1]), but to the author knowledge, the energetic effects have
never been involved in rubber theories. In case of not cross-
linked polymers, the energetic component(s) of defor-
mation, along with common entropy component, could also
significantly contribute in reversible part of stress tensor in
rubbery region due to the high level viscosities in the low
temperature region above T,. A ‘hybrid’, energetic/entropy
approach could facilitate understanding of specifics of
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rubbery behavior at large strains, with possible applications
for evaluations of strength and strain-induced crystal-
lization. A hybrid continuum constitutive model [2,3] of
relaxation type with additive energetic and entropy stresses
has been elaborated for describing rheological behavior of
amorphous polymers near the glass transition.

The statistical description of polymer behavior com-
monly uses the ‘coarse-graining’ approach, where the
polymer chains consisting of monomers with correlated
small-scale motions is represented as statistically indepen-
dent elements of chain. This approach describes well the
chain motion in the length scales larger than the correlation
length of monomer interaction along the chain. The
independent elements are usually established by partitioning
a polymer chain in equal parts whose sub-chain lengths are
not less than the correlation length along the chain. This way
of description of large-scale polymer macroscopic proper-
ties assumes its independence (or invariance) of partition-
ing. A good example of such coarse-graining approach is the
well-known Rouse bid-spring model [4,5], which describes
well the linear macroscopic relaxations of polymer chains in
dilute polymer solutions independently of partitioning the
molecular chain in bids, however, within a restricted
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frequency region. The recent papers [6,7] among others
experimentally revealed that there is a certain partitioning
specific for a given polymer that describes the linear
macroscopic dynamics of polymer chains in the whole
observable, very wide frequency region. Thus this prefer-
ential partitioning defines the ‘dynamic segments’ (DS) or
the bids with a certain average number of monomer units ng,
specific for a given polymer. There is currently no
understanding why it happens, and the ways of calculations
of the DS size are currently unknown.

The classical rubber elasticity employs Kuhn coarse-
graining approach [1], which is far stiffer than the Rouse
approach. Kuhn defined the freely jointed (FJ) segments
using two conditions: (i) the mean-square end-to-end
distances as well as (ii) the contour lengths for the real
and FJ chains should be equal. These two conditions
allowed determining both the length and mass of Kuhn
segment using experiments or more detailed theories.
Although the Kuhn segment is often viewed as a real
‘kinetic unit’, i.e. a small part of a chain participating in
kinetic processes, it was recently shown (e.g. see Ref. [8]
and references there) that the concept of Kuhn segments
[1] is inconsistent with many experimental data. For
example, for polystyrene the mass of Kkinetic unit
established by neutron scattering is several times higher
than the mass of the Kuhn segment. The authors of Ref. [8]
argued that the reason for this difference is arbitrary
assumption (ii) in the Kuhn theory. Therefore, they
suggested using only the above condition (i), where the
mass of the statistic segment should be determined from
other data or more detailed theories. In this regard, keeping
in mind that the description by using only the Kuhn
segment is not unique, one has to show that the description
of rubber elasticity in the Gaussian region is independent
of partitioning the polymer chain in more large FJ parts,
and that there might exist a ‘dynamic segment’ which
could provide a uniform description of Gaussian and non-
Gaussian behavior of rubber elasticity.

The earlier analysis of flow data for polymer melts [9]
showed that the concept of Kuhn segment could not explain
the well-known fact of independence of activation energy of
the length of polymer chain. Therefore, the flow or dynamic
segment was defined in Ref. [9] as a part of macromolecule
that participates in rotational cooperative motions of
monomer units, when keeping the connectivity of macro-
molecular chains. The results of paper [9] when applied to
evaluation of the dynamic segment size, might serve as a an
example of choosing the size of dynamic segment if this
description is consistent and does not contradict other, e.g.
neutron scattering data. According to Ref. [9], the mass of
dynamic segment is an intrinsic property of a polymer. To
explain high frequency dynamic data for dilute polymer
solutions another approach [10] considers the increase in
initial Kuhn segment mass due to dynamically induced
‘rigidity’.

The ideas in papers [9,10] can be interpreted as a rough

attempt to understand the cooperative motions of monomers
inside the dynamic segments as the source of ‘energetic
elasticity’. This type of elasticity has been mentioned many
times in the literature (e.g. see Refs. [1-3]). Several more
fundamental theoretical and computational approaches have
also been developed to understand the kinetics of
conformational transitions of parts of macromolecules on
microscopic level (e.g. see Refs. [11-13]). However, the
important effect of cooperativeness, more difficult for
theoretical treatment, has not been understood.

In simple extension of crystallizing polymers, the strain-
induced crystallization could happen at high stretching
ratios. The needle-like (NL) polymer crystals that emerge in
this type of crystallization have been observed long ago at
high extensions of natural and synthetic crystallizing cross-
linked rubbers [1] (ch. 1). These crystals are quite different
from the common type of folded, thermal crystals occurred
in the stress free crystallization. Flory [14] developed a
statistical model for the strain-induced crystallization based
on the classical entropy (Gaussian) statistical calculations
that neglected the non-Gaussian effects of finite extensibility
of polymer chains, and internal energy contribution. The
dependence of extension force on stretching ratio in strain-
induced crystallization calculated in Ref. [14] displays
lesser stress in NL crystalline region as compared to that for
amorphous case. However, the experimental data [15,16]
clearly demonstrated increasing stress in the crystalline
region and were explained as reinforcement of rubber by the
emerged rigid crystals. Later, Flory’s theory has been
modified with introducing two new aspects: (1) non-
alignment of the crystalline chains along the tensile axis
[17], and (2) combination of NL and common folding-like
crystallization in cooling [18]. It should be mentioned that
the modification (2) could contradict the experimental data,
where the opposite effects unfolding the folded polymer
crystals under stretching, were reported (e.g. see Refs.
[19,20] and references there).

This paper is organized as follows. We first introduce the
concept of extendable dynamic segments and develop a
general equilibrium, continuum approach for simple
extension to obtain the hybrid stress—strain constitutive
relation. Then we specify thermodynamic functions respon-
sible for entropy and energetic contributions. In the
following we roughly evaluate macroscopic parameters in
the continuum model through molecular parameters, and
demonstrate that the description of entropy elasticity in
Gaussian region is independent of partitioning the chain in
FJ segments. Assuming that the semi-empirical approach
[9] provides the correct values for the size of DS ng we
present for three polymers, PE, PS and PBD, some
numerical examples. In the final part of the paper we
extend the previous results on crystallizing polymers. Here
we first develop a local thermodynamic description of
formation of NL crystals and evaluate their parameters. We
then develop a continuum model of stress-induced
crystallization.
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2. Qualitative description of structure

In this paper the Kuhn concept is not used because of its
inconsistency with many data in defining the mass of kinetic
segment mentioned before. The second reason, which also
follows from arbitrary assumption (ii) of Kuhn’s theory, is
the rigidity of Kuhn segment consisting of fully stretched
part of chain contour with corresponding monomer
numbers. Therefore, in non-Gaussian region, the Kuhn
approach is incapable to involve the internal energy
contributions in deformation of polymer chains, and
describes only entropy effects with singular behavior at
high stretching.

Underlying the continuum approach in this paper is a
multi-scale molecular model, which is qualitatively
described as follows. For low and moderate stretching
ratios, the macromolecules are viewed on the large scale as
consisting of Ny freely jointed ‘dynamic segments’ (or
‘bids’) consisting of ny monomer units each so that N=
Ngng. Here N is the degree of polymerization and ny is
considered below as known parameter. A possible method
of nyq estimations that might be valid in the non-Gaussian
region is discussed in Appendix A. Another important
geometrical parameter of dynamic segments is their
effective length /4. Although as a rule, [;Ng<L, where L is
the contour chain length, the condition for preserving
Gaussian statistics in this region determines /4 via the mass
of dynamic segment (Section 5).

According to the present approach, at small and moderate
stretching ratios, the large-scale motion responsible for the
entropy elasticity can be viewed as a conformational motion
of macromolecules consisting of FJ bids or DS’s with length
lq and number of monomer links ny. This macroscopic
coarse-graining description of entropy elasticity, being
independent of the polymer chain partitioning is similar to
the Kuhn approach but with more realistic value ng.

The inter-segmental motion of macromolecules is an
activation process, where macromolecules move by small
parts consisting of several connected monomers, performing
very fast collective crankshaft-type rotations [12]. Under
higher stretching ratios when even small parts of polymer
chains are extended, the rotational mobility of monomer
units is increasingly suppressed. At very high extensions,
when the monomer units are almost aligned, the relative
rotations are almost suppressed because they need energy
supply close to its maximum, roughly estimated as the
barrier value of trans-gauche transition for every link [10].
In order to model the high stretching behavior this paper
employs a concept of extendable DS’s, which have constant
masses and could be schematically viewed, as deformable
bids needed higher forces for their small-scale defor-
mations. These small-scale deformations of the DS’s
occur when the entropy elasticity begins saturating.

When the monomer units in a dynamic segment are
maximally oriented along the stretched chains, another,
fine-scale, motion of monomer units is still possible. This

motion, caused by distortion of valence angles between
adjacent monomer units, is responsible for the solid like
infinitesimal elasticity of the same type as in low molecular
weight crystals.

Both the small- and fine-scale deformations are two
different types of energetically related elasticity. Never-
theless, the term ‘energetic elasticity’ will often be use
below only for the less stiff energetic deformations related
to collective rotations of monomer units. The other,
extremely stiff energetic elasticity caused by distortion of
valence angles between adjacent monomer units will be
called the crystal-like (CL) elasticity.

On the continuum level, there are three macroscopic
Hookean moduli, entropic Gy, energetic G, and CL one G,
that characterized these types of elasticity, such that

G, <G, <G, (D

In summary, the present model views the polymer chains
as consisted of free jointed, deformable DS’s. On the
macroscopic level, the large-small- and fine-scale motions
of monomer units produce the entropic and energetic
components of deformations, which are not independent.
The behavior of the deformable bids in two-scale
(entropy/energetic) bid-spring model is sketched in Fig. 1.

It should be mentioned that the above qualitative picture
as well as inequalities (1) are not applicable to silicon
rubbers, because the energy change of valence angle for
these rubbers is less than the typical rotation energy (see
discussion in Ref. [9]).

The above multi-scale model can also be mechanistically
pictured as three consecutively connected springs, the first
one (‘entropic’) being soft, another (‘energetic’) stiff and the
third one (‘CL’) extremely stiff. If this hybrid spring is
extended by a relatively small force F its full displacement
is the sum of entropy Al;= F/«, energetic Al.= F/k., and CL
Al.=F/k., components, i.e. Al=Al.+ Al,+ Al., where «,
ke and k. are, respectively, the entropy, energetic and CL
spring constants. The hybrid’s force-displacement relation
F=xAl with the hybrid spring constant k = (k5 ' + &' +
k.11 clearly shows that under condition k<< k. << K., the

A)

Fig. 1. (A) Common bid-spring model, (B) bid-spring model with
extensible bids.
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entropy spring overwhelmingly contributes in the total
displacement of the spring.

3. Thermodynamic hybrid model in simple extension

We neglect here for simplicity the volume deformations,
i.e. consider p=pg=constant, and assume that in the
thermodynamic relation Af=Ae—TAs, where f is the
Helmbholtz free energy (density), the changes in the internal
energy Ae and entropy As are represented as:

1 1
pole = 5 Ge(T)Ye(2e) + 5 Ge(T)e(Ac),
. )
—poTAS = EGS(T)‘//S(AS)
Here A;, A. and A. are, respectively, the entropic,
energetic and CL elastic stretching ratios. Eq. (2) means:

pOf(Aea /157 Ac’ T)

1 1 1
= E GS(T)\//S(AS) + E Ge(T)lpe(Ae) + E Gc(T)lpc(Ac) (3)

The specific dependencies (2) and (3) of internal energy
and entropy on their own, stretching components is the main
assumption of the hybrid approach. It is physically
meaningful if the inequalities (1) are valid.

The relation between the entropic A, energetic A, CL A,
and total A stretching ratios, evident from the picturesque of
the multi-scale model, is postulated as:

A= 2 4)

In the regions of dominancy of either entropic or both
energetic elasticities, the respective true stresses are
represented as:

dy
A, T) = GAg——,
7,00 1) = Gy
dl// Ly ®)
O-B(Ae’ T) dl UC(AC’ T) dA

According to the physical sense of the hybrid modeling,
the entropy and both energetic stresses are not additive but
related to the total stress a(A,T) as:

0s(A, T) = 0(Ae, T) = (4., T) = 0(4,T) (6)

The relations (3)—(6) are compatible with the common
definition of the total stress-stretch relation
of

|T

o(4.T) = poh 47 )

Indeed, using identity
dA dA dAa
A=+ AA —— + AA— =1
ecdzl-’- Scdk+ T da

obtained by differentiating (4) with respect to A, and

calculating the right-hand side (7) with account of (3)
yields:

a—po/\f|r—uxz ( )d‘”’

i=s,e,c

da da da

da da da
a<xeac—s + Ao == + A —) =

= O AcAc + 0. A + 0 AcA

dAa da e da

The constitutive equation (CE), o =0(A,T), can now be
readily established using the functions a4(A,T), 0.(A.,T) and
(A, T) defined in (5). The assumption that the hybrid
model is thermodynamically stable results in the fact that
the three stress functions (A, T), 0.(4.,T) and o.(A.,T) are
monotonically increasing. Then using (6), one can introduce
the three inverse functions, A, = as_l(o, T), A.= ae_l(o, T)
and A, = ac_l(a, T), and obtain with the aid of (4) the inverse
hybrid CE in the general form:

Mo, T) = o; (0, T)o. (0, T)a;  (0,T) (8)

To specify relation (8), some physical models for
entropic, energetic and CL elasticity should be introduced.

4. Specific thermodynamic functions and hybrid CE’s

4.1. Entropy elasticity

When the Gaussian statistics is valid, there are the
familiar expressions for the classic entropic elasticity:

A2+2
-3

_pO(s - SO)T = Ws(xs’ T) G (T)

)
2 —1

o= GT)

S

When stretching ratio is high enough and non-Gaussian
effects are important, fractioning of macromolecular chains
in the dynamic segments employed in our multi-scale model
plays a pivotal role. This is because as compared to the
Kuhn segment statistics, the onset of non-Gaussian behavior
for dynamic segments may begin much earlier for chains
consisting of DS’s, which are generally larger than the Kuhn
segment. In the following, we simply use the semi-empirical
Warner—Gent potential [21,22], which describes the finite
extensibility of polymer chains in terms of Finger strain
tensor. In simple extension, the elastic potential and related
stress are presented as:



5600 A.lL Leonov / Polymer 46 (2005) 5596-5607

—pAsT =W, (A, T)

__ ! . _ 0 =3
= —5 G 3)ln[l @ = 3)]
X <1ls =2+ %) (10a)

2 _ —1
c=0,0,T) = GS(T)(ASA' 1) [1 — g‘: — ;’))] (10b)

Here, I* =1;4(2+), and A is the strain related to complete
aligning the DS’s but without taking into account their
internal stretching. Keeping in mind that the analysis of
entropy elasticity in our hybrid model is based on the
fractioning of polymer chains in DC’s whose size exceeds
the size of Kuhn segment, one can conclude that the value 7*
in (10) should be less than that when using the Kuhn
segment approach. Note that involving in this model a
possible dependence of A« on A., which contradicts the basic
assumption (2), makes the analysis needlessly more
complicated. When A;>>1 (and always when A.>>1), the
stress in (10b) is expressed in the simplified form:

2

A
o =04, T) = G(T) :

4.2. Energetic elasticity

To characterize this type of elasticity we employ the
simplest approach described in terms of Cauchy—Green
strain tensor. This approach is valid even for the relatively
soft energetic case when ny>>> 1. In simple extension, it is
presented as:

1
We(Ae’ T) = E Ge(T)we(Ae)
= %GC(T)(ZAC + 2.2 -3) (11a)

7= G(T)(Ae — 23 7) (11b)

In cases of rigid and soft energetic elasticity, relation
(11b) takes the respective forms:

0=3G.(A,—1) (A —1K1) (11¢)
=G (A.>1) (11d)
4.3. CL elasticity

This is an infinitesimal elasticity, where

3

W4, T) = %GC(T)%(XC) =35 G(T)e; (12a)

0 =3G.Te., I =1+e O<lel<l) (12b)

Note that the temperature dependencies G4(7T) and G.(T)

(or G.(T)) are qualitatively different. Unlike slightly
increasing function G(7), the energetic moduli G.(T) and
G.(T) are slightly decreasing function of 7, having a
maximum about 7, and being independent of T at higher
temperatures in the rubbery region.

4.4. Hybrid CE’s

Formula (8) along with the expressions for stress in (10)
and (11) constitutes the hybrid CE, (4), that could rarely be
explicitly expressed. Two cases will be considered below to
illustrate this constitutive behavior under conditions (1).

We first consider the transition from entropic to the
energetic elasticity assuming that the contribution of the CL
elasticity in stress is negligible, i.e. that crystal-like
‘springs’ are rigid. To illustrate the features of this transition
it is appropriate considering the large entropic strain
approximation (10c). Then CE (8) for hybrid elasticity
takes the forms:

) & G
i=(1+2 . (6< 13
( +3§> e <)) (132)
. & [ 3 .
=\ Trs @9 (13b)
A A o G
i=L 6=—"_ =1
n Tea fTon

Here parameter £ is the measure of relative contributions
of entropic and energetic parts in the total hybrid elasticity.
When ¢ <K&, due to (13a) A.=1, i.e. the energetic
contribution in the hybrid elasticity is negligible. Therefore,
this case is described by (10c) with A;—A. When ¢ > &,
formula (13b) describes the hybrid elasticity with large
stretches for arbitrary value of parameter . At the crossover
point ig between two asymptotic behaviors in (13), the
stress and strain characteristics are:

3 [ 3 3
AT T BT %
; | 3¢ .3
;{(;) =2, : /\(;) ——
* 1+ 362 ¢ 2

Consider now the dependence d(4;£) of the hybrid CE on
parameter £. When £ >> 1, the dynamic segments are almost
non-deformable up to very high stresses. Thus in this case
the entropy elasticity dominates over large deformation
region. When £ <1, the dynamic segments are significantly
deformable even at moderate strains. The behavior of
dependence A(6) for various values of £ is sketched in Fig. 2.
It is clearly seen from the above analysis that the model
describes a smooth transition from the pure entropy
elasticity to the pure energetic one, with no singular
behavior common for pure entropy approach.

A=
(14)
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Fig. 2. Schematic plots of ;1(&; &) for various values of &: §; <&, <&3.

The situation when the stretching of chains in dynamic
segments is close to their limit is still well described by the
relation (13b). Using (11d), where ¢ >> 1, this relation can
be equivalently represented in the form:

A
A=A A, ora:GeA—

*

(> GA%) (15a)

Formula (15a) describes the intermediate case when the
entropy elasticity is already saturated (o >> G,A2) but the
stretching effect of the CL elasticity is still very small. If this
small effect is not neglected, the asymptotic formula of
hybrid elasticity is:

A=A (1 + &) (15b)

Consider now the transition from the energetic to the CL
elasticity. Near the transition, formula (11d) is generally
invalid. Nevertheless, we can still approximately describe
this transition using (15b) assuming that near this transition
the energetic elasticity is almost saturated, i.e. the chains in
the dynamic segment are almost completely extended, with
A value reaching maximum A.,,. As soon as the equality
Ae = Aem 18 achieved, the CL elasticity, however, it is small,
cannot be ignored. Then using (12b) and (15b) the strain—
stress relation in the region of the CL elasticity, is given by:

A= A Aem(l + &), Or
N (15¢)
0=3GC<m_l>, (A>A*Aem)

The relation (15c) approximately describes the continu-
ous transition from the energetic to CL elasticity with a kink
at Ae = Aem.

5. Evaluation of parameters

5.1. Evaluation of chain parameters

Two chain parameters need to be evaluated, the number
of monomers ny in and the unperturbed length Iy of the

dynamic segment. The relation between them is:

ldzl\/Cmnd (16)

Here the parameter C. (=ny) characterizing the
stiffness of ‘infinite’ real chain is calculated using
experimental data or the detailed statistical approach [23].
Eq. (16) can be obtained in the following way [8]. The
Gaussian statistics of macromolecular coils yields:
(R3) = C,,NI?, where [ is the length of monomer link and
N is degree of polymerization. Using here the Gaussian
statistics for the description of polymer chain with the DS’s,
(R3) = NyI3, and the condition N=Ngnq results in (16).

Note that the condition N=Ngny preserving the mass
conservation for model and real chains is always valid for
any type of partitioning. In particular case of the Kuhn
segment when nq=C., relation (16) yields lj=1I=Cl,
and [4Nq=1[4N/nqg=NI. It means that the Kuhn segment is
rigid because it consists of the fully stretched arc of contour
chain containing C, monomers. In case of polymer chains
with rigid valence angles the inequality nq>n, = C. yields:
NI>[3Ng.

Parameter ny treated as ‘kinetic unit’ has been
experimentally evaluated in many papers ([4,5,8—10] and
references there). Calculations of n4, based on semi-
empirical model [9] in Appendix A, are presented in fourth
column of Table 1. The first three columns in this table show
the literature data for values of activation energy of viscous
flow E,,, the number N, of monomers in polymer sub-chain
between entanglements [24] and the values of C, [23].

Five parameters have been employed in the continuum
modeling of polymer rubbery behavior: (i) the modulus of
entropy elasticity Gy, (ii) the stretching ratio A« for finitely
(non-Gaussian) extendable polymer coils, fractioned in the
non-perturbed DS’s of length /,, (iii) the ultimate energetic
stretching ratio A.p, (iv) the energetic modulus G, and (v)
the modulus G. of CL elasticity. These parameters are
evaluated below, using scaling arguments that follow from
the multi-scale modeling and the values n4 from Table 1.

(i) Evaluating entropy elasticity modulus G, for DS
approach in the same way as for Kuhn segments,
yields the well-known expression:

RT
G(T) = akT = ">

a7
C

Here « is the number of cross-links (or entangle-
ments) in unite volume, k is the Boltzmann factor, p is
the density, R is the gas constant, T is the Kelvin
temperature, and M. is the molecular weight of
polymer chain between cross-links (or entangle-
ments). Relation (17) distinctly shows that the
description of entropy elasticity in the Gaussian
region is independent of partitioning the polymer
chain in FJ segments. Note that the values of G, for
cross-linked elastomers are commonly in the interval:
0.1-1 Mpa.
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Table 1

The values of parameters for PE, PS and PBD [9]

Material E, (kJ/mol) N, Co nyg A Aem G./Gq

PE 25 135 6.7 8.8 8.7 1.15 7480

PS 150 170 10 33 5.5 1.82 440

PBD 34 60 ~5 32 4 25 180
(i) Evaluation of stretching ratio A« for finitely (non- states, we obtain:

(iii)

@iv)

Gaussian) extensible polymer coils consisted of the
dynamic segments. With known length /4 of dynamic
segment, the gyration diameter Dy of the polymer coil
consisting of the Ny dynamic segments, and the
maximum conformational length L., i.e. the length
of completely aligned chain consisted of not stretched
dynamic segments, are evaluated as:

Dy ~ 1y

Nd’ Lconf = lde

Then the value A+ is evaluated, as:

L N
)\* ~ conf /N — o
Dd d ny

Evaluation of ultimate energetic stretching ratio A.p,.
It is calculated for the DC fully extended to its
maximum limit length s,,=Inq4 as:

(18)

smo_Ing

Sm Ma
la g

Co

Aem =

19)

Note, that if the CL energetic elasticity is considered
as very stiff, the total ultimate strain, A, is evaluated,
using (18) and (19) as:

(20)

The evaluation (20) also directly follows from the
definition:

N M
Y (R} \/C.NP

Formulae (18)—(20) allow estimating the values of A«
and A, under assumption [22] that A,~10. These
estimations for the three polymers are presented in
Table 1.

Evaluation of energetic modulus G.. The highly
stretched amorphous polymers with dominant ener-
getic behavior could be viewed as consisting of
almost extended set of DS’s. Following [10] we
assume that the energetic free energy e spent for limit
deformation A, is fully compensated by the limit
rotational energy of monomers. Since, in this case the
energy spent for rotation of every link approaches the
rotational barrier AE, between the trans and gauche

)

1

EGewe(Aem) zIBAEr (21)

Here (3 is the number of monomers in unit volume. It
is related to parameter « in (17) as 8= alN,, where N,
is number of monomer unit in polymer chain between
cross-links or entanglements. For flexible polymers,
AE /kT=gq, where at usual temperatures g=1.5-7,
depending on type of polymer [25]. Then relation (21)
is reduced to:

G N,
— = 2q —= (Aem)
G Ve

Here according to (10a) Y(4.) = 2A. + A.> — 3. The
rough evaluations of moduli ratio in (22) using the
(arbitrarily but uniform) values N.=100, g=2 and
calculated parameters A, are shown for the three
polymers in Table 1.

Evaluation of CL modulus G.. Near the transition
from energetic to CL elasticity the energetic and CL
stretching parameters cannot be considered as
independent. Nevertheless, using the simplified
molecular modeling in Ref. [12], we still can obtain
arough evaluating of G, considering only the motion
due to the distortion of valence angle 6, for a single
bond with the following potential:

(22)

ugsin®6,

U = %ug(cos 0 — cos b)* = T(549)2 (23)

Here 6, is the valence angle between two neighboring
bond vectors and 60=0—0, is the valence angle
distortion for the bond. We considered the potential
(23) near the minimum, 6 =0 for the fully stretched
chain, when the variations in the expressions (23) for
different bonds are negligible. The force applied
along the fully stretched chain causes the longitudinal
displacement of chain, calculated as the sum of equal
displacements due to the distortion of valence angles
in each bond. The axial displacement for each bond is
calculated as

= O —cos( )] = L sysin (o
l. lo_b{cos<2) cos(z)}~2b(66)5m(2)

For the zigzag configuration of chain, the stretching
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ratio is:

U=l _1 0o
& = =3 (0f)tan ( 2)

lo

Here [. and [, are the projections of the bond on
zigzag axis with disturbed and undisturbed values of
the valence angle, respectively. For the helix
configuration, the result is almost the same. Expres-
sing 06 via ¢. and substituting the result into (23)
yields:

U(0) = $upelcos’ (%) (24)

Here U(f) is the energy of stretching per one
monomer unit due to the distortion of valence angles.
The energy (24) multiplied by the number § of
monomers in unit volume should be equal to the
crystal-like energy density (12a), SU, = W, = 3/2G,
2 which gives:

(3 +4 cos 0y + cos 26,)
13

Ge = uy (25)
Here we wused the formulae, cos4(00/2) =1/8
(3+ 4 cos B + cos 26,), and m=pl°.

Typically, the values of energies ug are not more than two
orders of magnitude higher than the energies AE, of
rotational barriers [11]. It means that for PE, the Hook
modulus could approach the modulus of steel. This result is
known (see Tables 11-13, p. 429 in Ref. [26]). The results of
numerical evaluations of moduli for the three polymers are
consistent with the data in the Tables 11-13 in Ref. [26].

6. Crystallizing polymers: stress-induced crystallization

6.1. Formation of the needle like (NL) crystals

New effect, the strain-induced crystallization, which
occurs in stretching of crystallizing rubbery polymers, is
described below using the following hypothetical scenario.
It is assumed that the special type of NL crystals emerge
when some parts of macromolecules in well-stretched fibrils
randomly come very close to each other. As soon as it
happens, the attractive forces cause these fibrils to suddenly
collapse in rigid NL crystals, whose shape is maintained by
the emerged surface energy vy acting on the crystal sidewall.

Consider two deformed states for the same parts of
macromolecules before and after formation of a NL crystal.
The free energy density W./p for amorphous fibrils before
NL formation is described as: W.(A.) = 1/2G.y(A.), Where
we assume A.>>> 1. After formation of NL crystal, when the
surface energy emerges, the Gibbs’s energy of a NL crystal

is given by:

G. = Ttrcz'che(Ac) - 2’TU‘CIC’Y,

L Aeldnll (26)
Ae=—, ly=——
lo ng
Here r. and [, are the radius and length of the crystal, [ is
the length of stretched fibril before crystallization, and n,
an unknown parameter, is the number of monomer units in
fibrils forming the crystal length. Minimizing (26) with

respect to . and /. yields:

d Yy ng
— )G, =0: r.=—QR); A =2Am =4/ 27
(6%) e =03 re =G o e

(EJGCZO:M&)ZZ (28)
al, re

In obtaining (28) we used (27) and the definition of
stress: g(A.) = A.0W./0A.. We also used in (27) and (28) the
relation, A.=A.n, because the macromolecular parts
including in NL crystal are completely stretched.

On the other hand, the value of stress ¢ for a cylindrical
rod stretched with the ratio A, having a current radius r, and
being under action of surface energy on the sidewall is:

&zdm—% (29)

Formula (29) shows that the squeezing effect of
surface tension produces the release of the true stretching
stress. Comparing (28) and (29) yields the conclusion:
just formed a NL crystal is completely released from the
elongation force. This reveals the compensatory mech-
anism of extensional strain release by surface energy and
describes the occurrence of NL crystals as a stress
induced spontaneous transition from oriented polymer to
the NL crystals. As soon as the NL crystal is formed, it
is loaded once again in the axial direction from the
outside macromolecules, causing, however, almost no
deformation in NL crystal. The important consequence of
this analysis is that just formed NL crystals can be
viewed in the following deformation history as rigid
fillers. The rigidity of the NL crystal means that the
additional (infinitesimal) stretching of formed NL crystals
could only be caused by the fine motions of monomer
units due to the distortion of valence angles.

Because the asymptotic formulae (21) derived for highly
stretched DS’s are also valid in the case of NL crystal
formation, substituting the value of G, from (21) into the
left-hand side of (25), reduces (25) to the form:

g AEAen¥ilen) _ ¥
‘l/e(xem) o '

r. = rO = ’Y M
¢ BAE, AemVe(Aem)

In case of validity (11d) and A.,>>1, relation (30) is

(30)
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simplified to:

T, = 7
© BAE,

€1y

Here r. is the equilibrium radius of NL crystal.

The remarkable simple result (31) could also be readily
derived when considering the Gibbs’ energy function G, =
mr2l.BAE, — 2mr.l.y for the single NL crystal. The first
term in the right-hand side of this expression is the ultimate
stretching energy equal to the energy of rotational barriers,
approaching by monomer units confined in the NL crystal
volume. The second term there is the surface energy of the
single NL crystal. The value of the crystal radius r,, which
minimizes the Gibbs energy G, is found from (31), and
respective minimum value of G. is represented as: min
Ge= — Ty /(BAE,).

Although the equilibrium length /. of NL crystal cannot
be quantitatively found in the above 1D approach, simple
qualitative considerations show that

I, ~1, = Ing 32)

Indeed, the possible case, [. <<, is improbable because
of the high rigidity of DC’s. The opposite case, [.>> [, is
improbable too, because to form the NL single crystal of
that high length, several moderately extended DS’s should
be almost perfectly aligned in the stretching direction.

Two conclusions could be drawn from our model of the
NL crystal formation.

(1) The grow of a formed single NL crystal in the direction
of extension is highly improbable, because at the
instant of its formation, the crystal is relieved from
the stretching. Although due to the action of the
environmental polymer chains, the tension in the
stretching direction occurs, it should be in general
not enough to cause the grow of just formed NL crystal.
Growing a single NL crystal in the lateral direction is
also improbable due to the surface energy caused by
the attractive intermolecular forces.

(i) Similarly to the thermally formed crystals obtained
under cooling, the NL crystals formed under stretching
create the dispersed ‘crystal phase’ surrounded by
amorphous chains. The difference, however, is that in
strain-induced crystallization the concentration of NL
crystals gradually increases with growing strain.

6.2. Hybrid model for crystallizing rubbers

Developing this hybrid model needs specifying only the
energetic part of free energy and related expression for
stress. Two other components of hybrid model, entropic and
CL ones have been established in Sections 4 and 5. In case
of crystallizing rubbery polymers, the energetic component
of elasticity might be simplistically considered as a type of
elasticity for the filled system with NL crystals being the
rigid filler. Then taking into account that the energetic

elasticity happens in amorphous region of polymer
deformation, and that in our simple model the NL crystals
are oriented along the stretching direction, proposed
modeling of energetic elasticity is:

. WA, T) 1 A + 252 —3)

W, T) = —2 2 = _G(T)———= = 33

VoD ==y T2% D1y 43
c — aWé _ U(Ae)
g (Ae) - Ae GAe @=const — (1 _ (ﬂ)

(e = 2%
= G (T)—=——=~ 34
(T) = (34)

Here ¢ is the degree of NL crystallinity, Ws(4., T) and
(%) are free energy and stress, respectively, for crystal-
lizing rubbers in ‘energetic’ region of deformations,
We(Ae,T) and o(A.) are the corresponding variables for the
amorphous polymers defined in (11a) and (11b). Since, in
equilibrium ¢=¢(4.), the simplest phenomenological
modeling of this dependence is:

_ XA

p(Ae) = P (35)

Here A, is the ultimate energetic stretching ratio defined
in (20) and x (<1) is the maximal possible degree of
crystallinity, which depends of monomer stereochemistry
and treated here as an empirical factor. Substituting (35)
into (34) yields:

_ Ge(Ae - A‘;Z)

7O =TT (36)

In the limit of saturated energetic elasticity, when A, —
Ao > 1
. G.A
0 () = 7

(37

Using general expressions (4) and (6), reveals the
asymptotic behaviors of hybrid elasticity for crystallizing
rubbers, similar to those discussed in the Section 4.4. We
consider here the case of soft energetic elasticity when
Ae>>1, with the relation (11d) and, therefore, (10c) being
valid. Then the strain—stress relation obtained using (4) is:

P P G
A=1./ |46 38
1+&a+x&/xem< +03aGC> (38)

Here the parameters dand « have been defined in (13a)
and (13b). Note that similarly to relations (13a) and (13b),
formula (38) is strictly valid when ¢ >> «, or equivalently,
A.>> 1. However, one can start approximately using it when
the variables in (38) have passed the crossover values
defined in (14). Thus relation (38) describes the smooth
transition from entropy to energetic elasticity for crystal-
lizing rubber-like polymers. Note that all the formulae for
amorphous rubbers in Section 4 could be formally obtained
from (38) and similar relations in the limit ¥ — 0. Note that
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Fig. 3. Schematic plots of strain—stress dependences A(c) for crystallizing
(solid line) and amorphous (dashed line) rubber-like materials.

due to (37), the formula (15¢) that describes the transition
from energetic to CL elasticity is also valid for the case of
crystallizing rubbers in the vicinity A, = A.p,. Comparing the
first two terms in the product in (38) with (13b) clearly
shows that (38) describes the effect of reinforcement in
stress-induced crystallization.

The result of analysis of the hybrid constitutive relation
for crystallizing rubbers is sketched in Fig. 3, where the
strain—stress relations are shown by the solid/dashed lines
for in crystallizing/amorphous cases. The effect of the
strain-induced crystallization is well seen in Fig. 3.

Analysis of another function, A.(1), based on the CE’s of
hybrid elasticity resulted in the dependence of the degree of
crystallinity on the total stretching ratio, ¢(A)=xAc(A)/Aem,
sketched in Fig. 4. This plot obtained using modeling (35),
demonstrates the occurrence of a quasi-threshold for onset
of the stress-induced crystallization, because the ‘energetic’
stretching ratio A, is noticeable only when the entropic
elasticity is well developed and/or almost saturated.

Both the qualitative predictions in Figs. 3 and 4 seem
realistic as compared to the data in Ref. [1] (ch. 1).

7. Discussion

The present paper develops a model of hybrid
entropy/energetic elasticity on the example of simply
stretching. The model employs a version of bid-spring
model with deformable bids treated as dynamic segments
(DS’s). The extension of bids is attributed to the energetic

A A

Fig. 4. Sketch of dependence ¢(4) of degree of crystallinity on the
stretching ratio, qualitatively predicted by the hybrid approach.

elasticity dominated inside of DS’s, and is caused by
collective rotational motions of connected monomer units.

The key element in this modeling is evaluation of the
number nyg of monomers in dynamic segment. Along with
experimental evaluations of this parameter by neutron
scattering, one of the possible ways of evaluation of ny is
using the kinetic model [9] shown in Appendix A. In due
regard the pioneering Kuhn’s contribution in rubber
elasticity, his choice of segment treated as kinetic unit,
being the same arbitrary as other choices, is worse than
others, because it presents the rigid, a fully stretched arc of
contour chain consisting of C, monomer units, which
contradicts the measurements of kinetic units. More
appropriate approach to this problem was established by
Rouse in non-equilibrium statistical mechanics of polymer
chains [4,5]. In his bid-spring model the bids are treated as
sub-chains with bid mass dependent on the partition, but
with equivalent description of averaged statistical property
(relaxation function), independent of the chain partition in a
particular frequency region. The same result, independence
of rubber elasticity modulus on the chain partitioning in the
region of Gaussian statistics shown in (17), is valid for
Gaussian region of rubber elasticity. As mentioned in the
Introduction, recent experimental evidence of the unique-
ness (specified for a polymer) in the partition of bids
allowed the researchers to describe linear relaxation
dynamics of dilute polymer solutions in a very wide
frequency region [6,7]. Hopefully, the same uniqueness
(specified for a polymer) in the partition of chain could
extend the non-Gaussian description of rubber elasticity.

Three different types of elasticity have been taken into
account in formulation of the hybrid CE for amorphous
polymers: (i) entropy type with finitely extendable chains,
(ii) energetic type with finite elasticity known from
description of low molecular weight hard materials, and
(iii) crystal-like very tough elasticity known for minerals
and metals. A scaling approach was developed to evaluate
macroscopic parameters in the theory via microscopic ones.
Some numerical examples of evaluations for PE, PS and PB,
using the kinetic approach [9] briefly exposed in Appendix
A, seem to be realistic. These evaluations show that PS and
PB with the values of ny, more than three times exceeding
C«, have a mutual feature, very large side blocks in the
chain, e.g. for PS, the molecular weight of this block C¢Hs is
almost 3/4 of the molecular weight 104, of the monomer
unit. The physical reason for these effects is unknown.

This paper also developed a model of strain-induced
crystallization in crystallizing rubbery polymers, based on
the assumption that in crystallizing polymers, highly
oriented macromolecules could collapse in the needle-like
crystals. It was shown that there is an energy gain in this
strain-induced crystallization. Then the phenomenological
type of modeling has been employed that treats the stress—
strain behavior of a polymer crystallizing under force
similarly to the filled polymers, with reinforcement effect
caused by the needle-like rigid crystals.
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The equilibrium type of modeling presented in this paper
could be applied to more detailed description of large elastic
deformations in amorphous and crystallizing rubbers and
also could be useful for evaluations of rubber strength.

The non-equilibrium effects, such as relaxations (for
cross-linked polymers), and both relaxation and flow effects
(for not cross-linked polymers above T,) could also highly
affect the mechanical and optical behavior of amorphous
polymers in rubbery state. In case of modeling the non-
equilibrium properties of crystallizing rubbers, the kinetics
of stress-induced crystallization should also be taken into
account along with relaxations and flow effects.
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Appendix A. Kinetic evaluation of number of monomers
in dynamic segment

The kinetic approach used for evaluation, employs
the rate theory and considers the segmental motion of
macromolecules as an activation process. It means that
macromolecules move by small parts of several
connected monomers, performing very fast collective
crankshaft-type rotations. Because the activated
rotations happen in very small time intervals At of
order of nanosecond [12] only one motion in the chain
is probable during this time interval. The activation
barrier E, in this motion is proportional to number n of
monomers participating in elementary act of rotation,
because the traveling group of monomers needs to
readjust their conformation to another, ‘hole’ confor-
mation, using the relative rotations in neighboring
monomer links.

Based on this physical picture the probability distribution
of activated rotation of connected group containing n
monomer in a chain of N monomer units is established as:

(1—p)
[p(1 —pM)1”

Here p is the transitional probability of attaching one
monomer to the group. Expression (Al) yields:

N
> Pynip) =1
n=1

Py(n;p) =p" O<p<l; n=1) (AD

We also roughly consider the limit n— 1 in (17) as valid,
although it is not true. The average number (n(p))n over
distribution (Al),

1 NpV

(n(P))N = q - (A2)

monotonically increases with growing N, and for very long
chains, N— o, is independent of DP:

1
ee] 3

The activation energy for transition of » monomers is:
E.,=Eyn. Here E, is characteristic activation energy of low
molecular weight pre-polymer. Then the activation energy
of polymer chain with DP equal to N is defined as: E(N)=
Eo{n(p))x- It is seen that there is finite activation energy
E(©)=Exn(p))e=E)/(1—p)=E, for ‘infinite’ chain.
Although the parameter p is unknown, this model could be
tested on the example of slow Newtonian flow of polymers
with activation energies measured for polymer homological
series with increase in DP. It was experimentally found that the
activation energy of viscous flow in the Newtonian region
grows with increasing DP and is saturated at higher values of
DP. Then using (A2) the value p was evaluated in Ref. [9] as a
fitting parameter in description of experimental normalized
dependences E(N)/E,= E{n(p))x/{n(p)) for five polymers.
Here E,=E() is activation energy of viscous flow for very
high DP’s.

In paper [9] instead of (A3), the incorrect expression
p/(1—p) was written. This misprint, however, did not
change values of ny in Ref. [9] because the numerical values
of parameters p are very close to the unity. Surprisingly, the
model also realistically predicts the value ng=2.65 for
PDMS with Co, =6-7 [23].
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