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Abstract

A thermodynamically related continuum model developed for describing elastic rubber-like behavior of amorphous and crystallizing

polymers is exemplified for simple extension. This model is based on a new concept of extendable dynamic segment (DS) whose unperturbed

size is roughly evaluated for several polymers. The extension of the DS’s hinders the cooperative rotations of monomer groups and

contributes to the internal energy of chains. Therefore, in description of macroscopic elastic rubber deformation, this approach takes into

account the motions of chains caused by both the entropy and internal energy. The model displays a continuous transition from entropy to

energetic elasticity, without common singularity related to finite extensibility of polymer chains. A multi-scale molecular approach, based on

the concept of extendable DS’s, has been employed for evaluations of continuum parameters. In case of crystallizing polymers, a simple

model is developed for the strain-induced crystallization based on local calculations of energetic gain caused by the formation of needle-like

(NL) crystals. Then the strain-induced crystallization for a crystallizing rubber is described on continuum level taken into account the

reinforcement effects of emerging NL crystals.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Amorphous and crystallizing polymers demonstrate

different types of mechanical and optical behavior above

Tg. The amorphous polymers display the rubber-like

behavior in both the cross-linked and not cross-linked

states, the latter just above Tg. In case of cross-linked

rubbers, the importance of energetic component of

deformation has been discussed long ago (e.g. see Ref.

[1]), but to the author knowledge, the energetic effects have

never been involved in rubber theories. In case of not cross-

linked polymers, the energetic component(s) of defor-

mation, along with common entropy component, could also

significantly contribute in reversible part of stress tensor in

rubbery region due to the high level viscosities in the low

temperature region above Tg. A ‘hybrid’, energetic/entropy

approach could facilitate understanding of specifics of
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rubbery behavior at large strains, with possible applications

for evaluations of strength and strain-induced crystal-

lization. A hybrid continuum constitutive model [2,3] of

relaxation type with additive energetic and entropy stresses

has been elaborated for describing rheological behavior of

amorphous polymers near the glass transition.

The statistical description of polymer behavior com-

monly uses the ‘coarse-graining’ approach, where the

polymer chains consisting of monomers with correlated

small-scale motions is represented as statistically indepen-

dent elements of chain. This approach describes well the

chain motion in the length scales larger than the correlation

length of monomer interaction along the chain. The

independent elements are usually established by partitioning

a polymer chain in equal parts whose sub-chain lengths are

not less than the correlation length along the chain. This way

of description of large-scale polymer macroscopic proper-

ties assumes its independence (or invariance) of partition-

ing. A good example of such coarse-graining approach is the

well-known Rouse bid-spring model [4,5], which describes

well the linear macroscopic relaxations of polymer chains in

dilute polymer solutions independently of partitioning the

molecular chain in bids, however, within a restricted
Polymer 46 (2005) 5596–5607
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frequency region. The recent papers [6,7] among others

experimentally revealed that there is a certain partitioning

specific for a given polymer that describes the linear

macroscopic dynamics of polymer chains in the whole

observable, very wide frequency region. Thus this prefer-

ential partitioning defines the ‘dynamic segments’ (DS) or

the bids with a certain average number of monomer units nd,

specific for a given polymer. There is currently no

understanding why it happens, and the ways of calculations

of the DS size are currently unknown.

The classical rubber elasticity employs Kuhn coarse-

graining approach [1], which is far stiffer than the Rouse

approach. Kuhn defined the freely jointed (FJ) segments

using two conditions: (i) the mean-square end-to-end

distances as well as (ii) the contour lengths for the real

and FJ chains should be equal. These two conditions

allowed determining both the length and mass of Kuhn

segment using experiments or more detailed theories.

Although the Kuhn segment is often viewed as a real

‘kinetic unit’, i.e. a small part of a chain participating in

kinetic processes, it was recently shown (e.g. see Ref. [8]

and references there) that the concept of Kuhn segments

[1] is inconsistent with many experimental data. For

example, for polystyrene the mass of kinetic unit

established by neutron scattering is several times higher

than the mass of the Kuhn segment. The authors of Ref. [8]

argued that the reason for this difference is arbitrary

assumption (ii) in the Kuhn theory. Therefore, they

suggested using only the above condition (i), where the

mass of the statistic segment should be determined from

other data or more detailed theories. In this regard, keeping

in mind that the description by using only the Kuhn

segment is not unique, one has to show that the description

of rubber elasticity in the Gaussian region is independent

of partitioning the polymer chain in more large FJ parts,

and that there might exist a ‘dynamic segment’ which

could provide a uniform description of Gaussian and non-

Gaussian behavior of rubber elasticity.

The earlier analysis of flow data for polymer melts [9]

showed that the concept of Kuhn segment could not explain

the well-known fact of independence of activation energy of

the length of polymer chain. Therefore, the flow or dynamic

segment was defined in Ref. [9] as a part of macromolecule

that participates in rotational cooperative motions of

monomer units, when keeping the connectivity of macro-

molecular chains. The results of paper [9] when applied to

evaluation of the dynamic segment size, might serve as a an

example of choosing the size of dynamic segment if this

description is consistent and does not contradict other, e.g.

neutron scattering data. According to Ref. [9], the mass of

dynamic segment is an intrinsic property of a polymer. To

explain high frequency dynamic data for dilute polymer

solutions another approach [10] considers the increase in

initial Kuhn segment mass due to dynamically induced

‘rigidity’.

The ideas in papers [9,10] can be interpreted as a rough
attempt to understand the cooperative motions of monomers

inside the dynamic segments as the source of ‘energetic

elasticity’. This type of elasticity has been mentioned many

times in the literature (e.g. see Refs. [1–3]). Several more

fundamental theoretical and computational approaches have

also been developed to understand the kinetics of

conformational transitions of parts of macromolecules on

microscopic level (e.g. see Refs. [11–13]). However, the

important effect of cooperativeness, more difficult for

theoretical treatment, has not been understood.

In simple extension of crystallizing polymers, the strain-

induced crystallization could happen at high stretching

ratios. The needle-like (NL) polymer crystals that emerge in

this type of crystallization have been observed long ago at

high extensions of natural and synthetic crystallizing cross-

linked rubbers [1] (ch. 1). These crystals are quite different

from the common type of folded, thermal crystals occurred

in the stress free crystallization. Flory [14] developed a

statistical model for the strain-induced crystallization based

on the classical entropy (Gaussian) statistical calculations

that neglected the non-Gaussian effects of finite extensibility

of polymer chains, and internal energy contribution. The

dependence of extension force on stretching ratio in strain-

induced crystallization calculated in Ref. [14] displays

lesser stress in NL crystalline region as compared to that for

amorphous case. However, the experimental data [15,16]

clearly demonstrated increasing stress in the crystalline

region and were explained as reinforcement of rubber by the

emerged rigid crystals. Later, Flory’s theory has been

modified with introducing two new aspects: (1) non-

alignment of the crystalline chains along the tensile axis

[17], and (2) combination of NL and common folding-like

crystallization in cooling [18]. It should be mentioned that

the modification (2) could contradict the experimental data,

where the opposite effects unfolding the folded polymer

crystals under stretching, were reported (e.g. see Refs.

[19,20] and references there).

This paper is organized as follows. We first introduce the

concept of extendable dynamic segments and develop a

general equilibrium, continuum approach for simple

extension to obtain the hybrid stress–strain constitutive

relation. Then we specify thermodynamic functions respon-

sible for entropy and energetic contributions. In the

following we roughly evaluate macroscopic parameters in

the continuum model through molecular parameters, and

demonstrate that the description of entropy elasticity in

Gaussian region is independent of partitioning the chain in

FJ segments. Assuming that the semi-empirical approach

[9] provides the correct values for the size of DS nd we

present for three polymers, PE, PS and PBD, some

numerical examples. In the final part of the paper we

extend the previous results on crystallizing polymers. Here

we first develop a local thermodynamic description of

formation of NL crystals and evaluate their parameters. We

then develop a continuum model of stress-induced

crystallization.



Fig. 1. (A) Common bid-spring model, (B) bid-spring model with

extensible bids.
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2. Qualitative description of structure

In this paper the Kuhn concept is not used because of its

inconsistency with many data in defining the mass of kinetic

segment mentioned before. The second reason, which also

follows from arbitrary assumption (ii) of Kuhn’s theory, is

the rigidity of Kuhn segment consisting of fully stretched

part of chain contour with corresponding monomer

numbers. Therefore, in non-Gaussian region, the Kuhn

approach is incapable to involve the internal energy

contributions in deformation of polymer chains, and

describes only entropy effects with singular behavior at

high stretching.

Underlying the continuum approach in this paper is a

multi-scale molecular model, which is qualitatively

described as follows. For low and moderate stretching

ratios, the macromolecules are viewed on the large scale as

consisting of Nd freely jointed ‘dynamic segments’ (or

‘bids’) consisting of nd monomer units each so that NZ
Ndnd. Here N is the degree of polymerization and nd is

considered below as known parameter. A possible method

of nd estimations that might be valid in the non-Gaussian

region is discussed in Appendix A. Another important

geometrical parameter of dynamic segments is their

effective length ld. Although as a rule, ldNd!L, where L is

the contour chain length, the condition for preserving

Gaussian statistics in this region determines ld via the mass

of dynamic segment (Section 5).

According to the present approach, at small and moderate

stretching ratios, the large-scale motion responsible for the

entropy elasticity can be viewed as a conformational motion

of macromolecules consisting of FJ bids or DS’s with length

ld and number of monomer links nd. This macroscopic

coarse-graining description of entropy elasticity, being

independent of the polymer chain partitioning is similar to

the Kuhn approach but with more realistic value nd.

The inter-segmental motion of macromolecules is an

activation process, where macromolecules move by small

parts consisting of several connected monomers, performing

very fast collective crankshaft-type rotations [12]. Under

higher stretching ratios when even small parts of polymer

chains are extended, the rotational mobility of monomer

units is increasingly suppressed. At very high extensions,

when the monomer units are almost aligned, the relative

rotations are almost suppressed because they need energy

supply close to its maximum, roughly estimated as the

barrier value of trans-gauche transition for every link [10].

In order to model the high stretching behavior this paper

employs a concept of extendable DS’s, which have constant

masses and could be schematically viewed, as deformable

bids needed higher forces for their small-scale defor-

mations. These small-scale deformations of the DS’s

occur when the entropy elasticity begins saturating.

When the monomer units in a dynamic segment are

maximally oriented along the stretched chains, another,

fine-scale, motion of monomer units is still possible. This
motion, caused by distortion of valence angles between

adjacent monomer units, is responsible for the solid like

infinitesimal elasticity of the same type as in low molecular

weight crystals.

Both the small- and fine-scale deformations are two

different types of energetically related elasticity. Never-

theless, the term ‘energetic elasticity’ will often be use

below only for the less stiff energetic deformations related

to collective rotations of monomer units. The other,

extremely stiff energetic elasticity caused by distortion of

valence angles between adjacent monomer units will be

called the crystal-like (CL) elasticity.

On the continuum level, there are three macroscopic

Hookean moduli, entropic Gs, energetic Ge, and CL one Gc,

that characterized these types of elasticity, such that

Gs/Ge/Gc (1)

In summary, the present model views the polymer chains

as consisted of free jointed, deformable DS’s. On the

macroscopic level, the large-small- and fine-scale motions

of monomer units produce the entropic and energetic

components of deformations, which are not independent.

The behavior of the deformable bids in two-scale

(entropy/energetic) bid-spring model is sketched in Fig. 1.

It should be mentioned that the above qualitative picture

as well as inequalities (1) are not applicable to silicon

rubbers, because the energy change of valence angle for

these rubbers is less than the typical rotation energy (see

discussion in Ref. [9]).

The above multi-scale model can also be mechanistically

pictured as three consecutively connected springs, the first

one (‘entropic’) being soft, another (‘energetic’) stiff and the

third one (‘CL’) extremely stiff. If this hybrid spring is

extended by a relatively small force F its full displacement

is the sum of entropy DlsZF/k, energetic DleZF/ke, and CL

DlcZF/kc, components, i.e. DlZDleCDlsCDlc, where ks,

ke and kc are, respectively, the entropy, energetic and CL

spring constants. The hybrid’s force-displacement relation

FZkDl with the hybrid spring constant kZ ðkK1
s CkK1

e C
kK1
c ÞK1 clearly shows that under condition ks/ke/kc, the
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entropy spring overwhelmingly contributes in the total

displacement of the spring.
3. Thermodynamic hybrid model in simple extension

We neglect here for simplicity the volume deformations,

i.e. consider rZr0Zconstant, and assume that in the

thermodynamic relation DfZDeKTDs, where f is the

Helmholtz free energy (density), the changes in the internal

energy De and entropy Ds are represented as:

r0DeZ
1

2
GeðTÞjeðleÞC

1

2
GcðTÞjcðlcÞ;

Kr0TDsZ
1

2
GsðTÞjsðlsÞ

(2)

Here ls, le and lc are, respectively, the entropic,

energetic and CL elastic stretching ratios. Eq. (2) means:

r0f ðle; ls; lc;TÞ

Z
1

2
GsðTÞjsðlsÞC

1

2
GeðTÞjeðleÞC

1

2
GcðTÞjcðlcÞ (3)

The specific dependencies (2) and (3) of internal energy

and entropy on their own, stretching components is the main

assumption of the hybrid approach. It is physically

meaningful if the inequalities (1) are valid.

The relation between the entropic ls, energetic le, CL lc
and total l stretching ratios, evident from the picturesque of

the multi-scale model, is postulated as:

lZ lslelc (4)

In the regions of dominancy of either entropic or both

energetic elasticities, the respective true stresses are

represented as:

ssðls;TÞZGsls
djs

dls
;

seðle; TÞZGele
dje

dle
; scðlc;TÞZGclc

djc

dlc

(5)

According to the physical sense of the hybrid modeling,

the entropy and both energetic stresses are not additive but

related to the total stress s(l,T) as:

ssðls;TÞZ seðle;TÞZ scðlc; TÞZ sðl;TÞ (6)

The relations (3)–(6) are compatible with the common

definition of the total stress-stretch relation

sðl; TÞZ r0l
vf

vl
jT (7)

Indeed, using identity

lelc
dls
dl

Clslc
dle
dl

Clsle
dlc
dl

h1

obtained by differentiating (4) with respect to l, and
calculating the right-hand side (7) with account of (3)

yields:

sZ r0l
vf

vl
jT Z lslelc

X
iZs;e;c

Gi

dli
dl

� �
dji

dli

Z sslelc
dls
dl

Cselslc
dle
dl

Csclels
dlc
dl

Z s lelc
dls
dl

Clslc
dle
dl

Clsle
dlc
dl

� �
hs

The constitutive equation (CE), sZs(l,T), can now be

readily established using the functions ss(ls,T), se(le,T) and

sc(lc,T) defined in (5). The assumption that the hybrid

model is thermodynamically stable results in the fact that

the three stress functions ss(ls,T), se(le,T) and sc(lc,T) are

monotonically increasing. Then using (6), one can introduce

the three inverse functions, lsZsK1
s ðs;TÞ, leZsK1

e ðs;TÞ

and lcZsK1
c ðs;TÞ, and obtain with the aid of (4) the inverse

hybrid CE in the general form:

lðs;TÞZ sK1
s ðs;TÞsK1

e ðs;TÞsK1
c ðs;TÞ (8)

To specify relation (8), some physical models for

entropic, energetic and CL elasticity should be introduced.
4. Specific thermodynamic functions and hybrid CE’s
4.1. Entropy elasticity

When the Gaussian statistics is valid, there are the

familiar expressions for the classic entropic elasticity:

Kr0ðsKs0ÞThWsðls; TÞZ
1

2
GsðTÞ

l2s C2

ls K3
;

sZGsðTÞ
l2s K1

ls

(9)

When stretching ratio is high enough and non-Gaussian

effects are important, fractioning of macromolecular chains

in the dynamic segments employed in our multi-scale model

plays a pivotal role. This is because as compared to the

Kuhn segment statistics, the onset of non-Gaussian behavior

for dynamic segments may begin much earlier for chains

consisting of DS’s, which are generally larger than the Kuhn

segment. In the following, we simply use the semi-empirical

Warner–Gent potential [21,22], which describes the finite

extensibility of polymer chains in terms of Finger strain

tensor. In simple extension, the elastic potential and related

stress are presented as:
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KrDsThWsðls; TÞ

ZK
1

2
GsðTÞðI

� K3Þln 1K
ðI1s K3Þ

ðI� K3Þ

� �

! I1s Z l2s C
2

ls

� �
ð10aÞ

sZ ssðls;TÞZGsðTÞ
l2s K1

ls

� �
1K

ðI1s K3Þ

ðI� K3Þ

� �K1

(10b)

Here, I*ZI1s(l*), and l* is the strain related to complete

aligning the DS’s but without taking into account their

internal stretching. Keeping in mind that the analysis of

entropy elasticity in our hybrid model is based on the

fractioning of polymer chains in DC’s whose size exceeds

the size of Kuhn segment, one can conclude that the value I*

in (10) should be less than that when using the Kuhn

segment approach. Note that involving in this model a

possible dependence of l* on le, which contradicts the basic

assumption (2), makes the analysis needlessly more

complicated. When ls[1 (and always when l*[1), the

stress in (10b) is expressed in the simplified form:

sZ ssðls;TÞzGsðTÞ
l2s

1K ðls=l�Þ
2

ðls[1Þ (10c)
4.2. Energetic elasticity

To characterize this type of elasticity we employ the

simplest approach described in terms of Cauchy–Green

strain tensor. This approach is valid even for the relatively

soft energetic case when nd[1. In simple extension, it is

presented as:

Weðle;TÞZ
1

2
GeðTÞjeðleÞ

Z
1

2
GeðTÞð2le ClK2

e K3Þ (11a)

sZGeðTÞðle KlK2
e Þ (11b)

In cases of rigid and soft energetic elasticity, relation

(11b) takes the respective forms:

sz3Geðle K1Þ ðle K1/1Þ (11c)

szGele ðle[1Þ (11d)
4.3. CL elasticity

This is an infinitesimal elasticity, where

Wcðlc;TÞZ
1

2
GcðTÞjcðlcÞZ

3

2
GcðTÞ3

2
c (12a)

sZ 3GcðTÞ3c; lc Z 1C3c ð0! j3cj/1Þ (12b)

Note that the temperature dependencies Gs(T) and Ge(T)
(or Gc(T)) are qualitatively different. Unlike slightly

increasing function Gs(T), the energetic moduli Ge(T) and

Gc(T) are slightly decreasing function of T, having a

maximum about Tg and being independent of T at higher

temperatures in the rubbery region.
4.4. Hybrid CE’s

Formula (8) along with the expressions for stress in (10)

and (11) constitutes the hybrid CE, s(l), that could rarely be

explicitly expressed. Two cases will be considered below to

illustrate this constitutive behavior under conditions (1).

We first consider the transition from entropic to the

energetic elasticity assuming that the contribution of the CL

elasticity in stress is negligible, i.e. that crystal-like

‘springs’ are rigid. To illustrate the features of this transition

it is appropriate considering the large entropic strain

approximation (10c). Then CE (8) for hybrid elasticity

takes the forms:

l̂z 1C
ŝ

3x

� � ffiffiffiffiffiffiffiffiffiffiffiffi
ŝ

1C ŝ

r
; ðŝ/xÞ (13a)

l̂z
ŝ

x

ffiffiffiffiffiffiffiffiffiffiffiffi
ŝ

1C ŝ

r
; ðŝ[xÞ (13b)

l̂Z
l

l�
; ŝZ

s

Gsl
2
�

; xZ
Ge

Gsl
2
�

Here parameter x is the measure of relative contributions

of entropic and energetic parts in the total hybrid elasticity.

When ŝ/x, due to (13a) lez1, i.e. the energetic

contribution in the hybrid elasticity is negligible. Therefore,

this case is described by (10c) with ls/l. When ŝ[x,

formula (13b) describes the hybrid elasticity with large

stretches for arbitrary value of parameter x. At the crossover

point l̂x between two asymptotic behaviors in (13), the

stress and strain characteristics are:

l̂Z l̂s : ls Z l�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3x=2

1C33=2

r
; ss Z

3

2
Ge;

lðxÞs Z l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3x=2

1C3x=2

s
; lðxÞe Z

3

2

(14)

Consider now the dependence s(l;x) of the hybrid CE on

parameter x. When x[1, the dynamic segments are almost

non-deformable up to very high stresses. Thus in this case

the entropy elasticity dominates over large deformation

region. When x%1, the dynamic segments are significantly

deformable even at moderate strains. The behavior of

dependence l̂ðŝÞ for various values of x is sketched in Fig. 2.

It is clearly seen from the above analysis that the model

describes a smooth transition from the pure entropy

elasticity to the pure energetic one, with no singular

behavior common for pure entropy approach.



Fig. 2. Schematic plots of l̂ðŝ; xÞ for various values of x: x1!x2!x3.
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The situation when the stretching of chains in dynamic

segments is close to their limit is still well described by the

relation (13b). Using (11d), where ŝ[1, this relation can

be equivalently represented in the form:

lzl�le; or szGe

l

l�
ðs[Gsl

2
�Þ (15a)

Formula (15a) describes the intermediate case when the

entropy elasticity is already saturated ðs[Gsl
2
�Þ but the

stretching effect of the CL elasticity is still very small. If this

small effect is not neglected, the asymptotic formula of

hybrid elasticity is:

lzl�leð1C3cÞ (15b)

Consider now the transition from the energetic to the CL

elasticity. Near the transition, formula (11d) is generally

invalid. Nevertheless, we can still approximately describe

this transition using (15b) assuming that near this transition

the energetic elasticity is almost saturated, i.e. the chains in

the dynamic segment are almost completely extended, with

le value reaching maximum lem. As soon as the equality

lezlem is achieved, the CL elasticity, however, it is small,

cannot be ignored. Then using (12b) and (15b) the strain–

stress relation in the region of the CL elasticity, is given by:

lzl�lemð1C3cÞ; or

sZ 3Gc

l

l�lem
K1

� �
; ðlOl�lemÞ

(15c)

The relation (15c) approximately describes the continu-

ous transition from the energetic to CL elasticity with a kink

at lezlem.
5. Evaluation of parameters
5.1. Evaluation of chain parameters

Two chain parameters need to be evaluated, the number

of monomers nd in and the unperturbed length ld of the
dynamic segment. The relation between them is:

ldzl
ffiffiffiffiffiffiffiffiffiffiffi
CNnd

p
(16)

Here the parameter CN (znk) characterizing the

stiffness of ‘infinite’ real chain is calculated using

experimental data or the detailed statistical approach [23].

Eq. (16) can be obtained in the following way [8]. The

Gaussian statistics of macromolecular coils yields:

hR2
0izCNNl

2, where l is the length of monomer link and

N is degree of polymerization. Using here the Gaussian

statistics for the description of polymer chain with the DS’s,

hR2
0izNdl

2
d, and the condition NZNdnd results in (16).

Note that the condition NZNdnd preserving the mass

conservation for model and real chains is always valid for

any type of partitioning. In particular case of the Kuhn

segment when ndZCN, relation (16) yields ldZlkZCNl,

and ldNdZldN/ndZNl. It means that the Kuhn segment is

rigid because it consists of the fully stretched arc of contour

chain containing CN monomers. In case of polymer chains

with rigid valence angles the inequality ndOnkzCN yields:

NlOldNd.

Parameter nd treated as ‘kinetic unit’ has been

experimentally evaluated in many papers ([4,5,8–10] and

references there). Calculations of nd, based on semi-

empirical model [9] in Appendix A, are presented in fourth

column of Table 1. The first three columns in this table show

the literature data for values of activation energy of viscous

flow Ep, the number Ne of monomers in polymer sub-chain

between entanglements [24] and the values of CN [23].

Five parameters have been employed in the continuum

modeling of polymer rubbery behavior: (i) the modulus of

entropy elasticity Gs, (ii) the stretching ratio l* for finitely

(non-Gaussian) extendable polymer coils, fractioned in the

non-perturbed DS’s of length ld, (iii) the ultimate energetic

stretching ratio lem, (iv) the energetic modulus Ge, and (v)

the modulus Gc of CL elasticity. These parameters are

evaluated below, using scaling arguments that follow from

the multi-scale modeling and the values nd from Table 1.

(i) Evaluating entropy elasticity modulus Gs for DS

approach in the same way as for Kuhn segments,

yields the well-known expression:

GsðTÞZakT Z
rRT

Mc

(17)

Here a is the number of cross-links (or entangle-

ments) in unite volume, k is the Boltzmann factor, r is

the density, R is the gas constant, T is the Kelvin

temperature, and Mc is the molecular weight of

polymer chain between cross-links (or entangle-

ments). Relation (17) distinctly shows that the

description of entropy elasticity in the Gaussian

region is independent of partitioning the polymer

chain in FJ segments. Note that the values of Gs for

cross-linked elastomers are commonly in the interval:

0.1–1 Mpa.



Table 1

The values of parameters for PE, PS and PBD [9]

Material Ep (kJ/mol) Ne CN nd l* lem Ge/Gs

PE 25 135 6.7 8.8 8.7 1.15 7480

PS 150 170 10 33 5.5 1.82 440

PBD 34 60 w5 32 4 2.5 180
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(ii) Evaluation of stretching ratio l* for finitely (non-

Gaussian) extensible polymer coils consisted of the

dynamic segments. With known length ld of dynamic

segment, the gyration diameter Dd of the polymer coil

consisting of the Nd dynamic segments, and the

maximum conformational length Lconf, i.e. the length

of completely aligned chain consisted of not stretched

dynamic segments, are evaluated as:

Ddwld
ffiffiffiffiffiffi
Nd

p
; LconfzldNd

Then the value l* is evaluated, as:

l�z
Lconf
Dd

w
ffiffiffiffiffiffi
Nd

p
Z

ffiffiffiffiffi
N

nd

s
(18)

(iii) Evaluation of ultimate energetic stretching ratio lem.

It is calculated for the DC fully extended to its

maximum limit length smZlnd as:

lemz
sm
ld

Z
lnd
ld

z

ffiffiffiffiffiffiffi
nd
CN

r
(19)

Note, that if the CL energetic elasticity is considered

as very stiff, the total ultimate strain, lu is evaluated,

using (18) and (19) as:

luzl�lemz

ffiffiffiffiffiffiffi
N

CN

s
(20)

The evaluation (20) also directly follows from the

definition:

luz
Nl

hR2
0i
Z

Nlffiffiffiffiffiffiffiffiffiffiffiffiffi
CNNl

2
p

Formulae (18)–(20) allow estimating the values of l*
and lem under assumption [22] that luz10. These

estimations for the three polymers are presented in

Table 1.

(iv) Evaluation of energetic modulus Ge. The highly

stretched amorphous polymers with dominant ener-

getic behavior could be viewed as consisting of

almost extended set of DS’s. Following [10] we

assume that the energetic free energy e spent for limit

deformation lem is fully compensated by the limit

rotational energy of monomers. Since, in this case the

energy spent for rotation of every link approaches the

rotational barrier DEr between the trans and gauche
states, we obtain:

1

2
GejeðlemÞzbDEr (21)

Here b is the number of monomers in unit volume. It

is related to parameter a in (17) as bzaNe, where Ne

is number of monomer unit in polymer chain between

cross-links or entanglements. For flexible polymers,

DEe/kTzq, where at usual temperatures qz1.5–7,

depending on type of polymer [25]. Then relation (21)

is reduced to:

Ge

Gs

z2q
Ne

je

ðlemÞ (22)

Here according to (10a) jðleÞZ2leClK2
e K3. The

rough evaluations of moduli ratio in (22) using the

(arbitrarily but uniform) values NeZ100, qZ2 and

calculated parameters lem are shown for the three

polymers in Table 1.

(v) Evaluation of CL modulus Gc. Near the transition

from energetic to CL elasticity the energetic and CL

stretching parameters cannot be considered as

independent. Nevertheless, using the simplified

molecular modeling in Ref. [12], we still can obtain

a rough evaluating of Gc, considering only the motion

due to the distortion of valence angle q0 for a single

bond with the following potential:

UðqÞZ
1

2
uqðcos qKcos q0Þ

2z
uqsin

2q0

2
ðdqÞ2 (23)

Here q0 is the valence angle between two neighboring

bond vectors and dqhqKq0 is the valence angle

distortion for the bond. We considered the potential

(23) near the minimum, qZq0 for the fully stretched

chain, when the variations in the expressions (23) for

different bonds are negligible. The force applied

along the fully stretched chain causes the longitudinal

displacement of chain, calculated as the sum of equal

displacements due to the distortion of valence angles

in each bond. The axial displacement for each bond is

calculated as

lc K l0hb cos
q

2

� �
Kcos

q0

2

� �� �
z

1

2b
ðdqÞsin

q0

2

� �

For the zigzag configuration of chain, the stretching
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ratio is:

3c Z
ðlc K l0Þ

l0
Z

1

2
ðdqÞtan

q0

2

� �

Here lc and l0 are the projections of the bond on

zigzag axis with disturbed and undisturbed values of

the valence angle, respectively. For the helix

configuration, the result is almost the same. Expres-

sing dq via 3c and substituting the result into (23)

yields:

UðqÞZ 8uq3
2
ccos

4 q0

2

� �
(24)

Here U(q) is the energy of stretching per one

monomer unit due to the distortion of valence angles.

The energy (24) multiplied by the number b of

monomers in unit volume should be equal to the

crystal-like energy density (12a), bUqzWcZ3=2Gc

32c which gives:

Gczuq
ð3C4 cos q0 Ccos 2q0Þ

l3
(25)

Here we used the formulae, cos4ðq0=2ÞZ1=8

ð3C4 cos q0Ccos 2q0Þ, and mzrl3.

Typically, the values of energies uq are not more than two

orders of magnitude higher than the energies DEr of

rotational barriers [11]. It means that for PE, the Hook

modulus could approach the modulus of steel. This result is

known (see Tables 11–13, p. 429 in Ref. [26]). The results of

numerical evaluations of moduli for the three polymers are

consistent with the data in the Tables 11–13 in Ref. [26].
6. Crystallizing polymers: stress-induced crystallization
6.1. Formation of the needle like (NL) crystals

New effect, the strain-induced crystallization, which

occurs in stretching of crystallizing rubbery polymers, is

described below using the following hypothetical scenario.

It is assumed that the special type of NL crystals emerge

when some parts of macromolecules in well-stretched fibrils

randomly come very close to each other. As soon as it

happens, the attractive forces cause these fibrils to suddenly

collapse in rigid NL crystals, whose shape is maintained by

the emerged surface energy g acting on the crystal sidewall.

Consider two deformed states for the same parts of

macromolecules before and after formation of a NL crystal.

The free energy density We/r for amorphous fibrils before

NL formation is described as: We(le)Z1/2Geje(le), where

we assume le[1. After formation of NL crystal, when the

surface energy emerges, the Gibbs’s energy of a NL crystal
is given by:

Gc Zpr2c lcWeðlcÞK2prclcg;

lc Z
lc
l0
; l0z

leldns
nd

(26)

Here rc and lc are the radius and length of the crystal, l0 is

the length of stretched fibril before crystallization, and ns,

an unknown parameter, is the number of monomer units in

fibrils forming the crystal length. Minimizing (26) with

respect to rc and lc yields:

v

vrc

� �
Gc Z 0 : rc Z

g

We

ðlcÞ; lc Z lemz

ffiffiffiffiffiffiffi
nd
CN

r
(27)

v

vlc

� �
Gc Z 0 : sðlcÞZ

g

rc
(28)

In obtaining (28) we used (27) and the definition of

stress: s(lc)ZlcvWe/vlc. We also used in (27) and (28) the

relation, lcZlem, because the macromolecular parts

including in NL crystal are completely stretched.

On the other hand, the value of stress ŝ for a cylindrical

rod stretched with the ratio l, having a current radius r, and

being under action of surface energy on the sidewall is:

ŝZ sðlÞK
g

r
(29)

Formula (29) shows that the squeezing effect of

surface tension produces the release of the true stretching

stress. Comparing (28) and (29) yields the conclusion:

just formed a NL crystal is completely released from the

elongation force. This reveals the compensatory mech-

anism of extensional strain release by surface energy and

describes the occurrence of NL crystals as a stress

induced spontaneous transition from oriented polymer to

the NL crystals. As soon as the NL crystal is formed, it

is loaded once again in the axial direction from the

outside macromolecules, causing, however, almost no

deformation in NL crystal. The important consequence of

this analysis is that just formed NL crystals can be

viewed in the following deformation history as rigid

fillers. The rigidity of the NL crystal means that the

additional (infinitesimal) stretching of formed NL crystals

could only be caused by the fine motions of monomer

units due to the distortion of valence angles.

Because the asymptotic formulae (21) derived for highly

stretched DS’s are also valid in the case of NL crystal

formation, substituting the value of Ge from (21) into the

left-hand side of (25), reduces (25) to the form:

b
DErlemj

0
eðlemÞ

jeðlemÞ
Z

g

r0
; or

rc Z r0 Z
g

bDEr

jeðlemÞ

lemj
0
eðlemÞ

(30)

In case of validity (11d) and lem[1, relation (30) is
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simplified to:

rc Z
g

bDEr

(31)

Here rc is the equilibrium radius of NL crystal.

The remarkable simple result (31) could also be readily

derived when considering the Gibbs’ energy function GcZ
pr2c lcbDErK2prclcg for the single NL crystal. The first

term in the right-hand side of this expression is the ultimate

stretching energy equal to the energy of rotational barriers,

approaching by monomer units confined in the NL crystal

volume. The second term there is the surface energy of the

single NL crystal. The value of the crystal radius rc, which

minimizes the Gibbs energy Gc, is found from (31), and

respective minimum value of Gc is represented as: min

GcZKplcg
2/(bDEr).

Although the equilibrium length lc of NL crystal cannot

be quantitatively found in the above 1D approach, simple

qualitative considerations show that

lcwlm Z lnd (32)

Indeed, the possible case, lc/lm, is improbable because

of the high rigidity of DC’s. The opposite case, lc[lm, is

improbable too, because to form the NL single crystal of

that high length, several moderately extended DS’s should

be almost perfectly aligned in the stretching direction.

Two conclusions could be drawn from our model of the

NL crystal formation.

(i) The grow of a formed single NL crystal in the direction

of extension is highly improbable, because at the

instant of its formation, the crystal is relieved from

the stretching. Although due to the action of the

environmental polymer chains, the tension in the

stretching direction occurs, it should be in general

not enough to cause the grow of just formed NL crystal.

Growing a single NL crystal in the lateral direction is

also improbable due to the surface energy caused by

the attractive intermolecular forces.

(ii) Similarly to the thermally formed crystals obtained

under cooling, the NL crystals formed under stretching

create the dispersed ‘crystal phase’ surrounded by

amorphous chains. The difference, however, is that in

strain-induced crystallization the concentration of NL

crystals gradually increases with growing strain.
6.2. Hybrid model for crystallizing rubbers

Developing this hybrid model needs specifying only the

energetic part of free energy and related expression for

stress. Two other components of hybrid model, entropic and

CL ones have been established in Sections 4 and 5. In case

of crystallizing rubbery polymers, the energetic component

of elasticity might be simplistically considered as a type of

elasticity for the filled system with NL crystals being the

rigid filler. Then taking into account that the energetic
elasticity happens in amorphous region of polymer

deformation, and that in our simple model the NL crystals

are oriented along the stretching direction, proposed

modeling of energetic elasticity is:

Wc
e ðle;TÞZ

Weðle;TÞ

ð1K4Þ
Z

1

2
GeðTÞ

ð2le ClK2
e K3Þ

ð1K4Þ
(33)

scðleÞZ le
vWc

e

vle
j4Zconst Z

sðleÞ

ð1K4Þ

ZGeðTÞ
ðle KlK2

e Þ

ð1K4Þ
(34)

Here f is the degree of NL crystallinity, Wc
e ðle; TÞ and

sc(le) are free energy and stress, respectively, for crystal-

lizing rubbers in ‘energetic’ region of deformations,

We(le,T) and s(le) are the corresponding variables for the

amorphous polymers defined in (11a) and (11b). Since, in

equilibrium fZf(le), the simplest phenomenological

modeling of this dependence is:

4ðleÞZ
cle

lem
(35)

Here lem is the ultimate energetic stretching ratio defined

in (20) and c (!1) is the maximal possible degree of

crystallinity, which depends of monomer stereochemistry

and treated here as an empirical factor. Substituting (35)

into (34) yields:

scðleÞZ
Geðle KlK2

e Þ

1Kcle=lem
(36)

In the limit of saturated energetic elasticity, when le/
lem[1

scðlemÞz
Gelem

1Kc
(37)

Using general expressions (4) and (6), reveals the

asymptotic behaviors of hybrid elasticity for crystallizing

rubbers, similar to those discussed in the Section 4.4. We

consider here the case of soft energetic elasticity when

le[1, with the relation (11d) and, therefore, (10c) being

valid. Then the strain–stress relation obtained using (4) is:

lZ l�

ffiffiffiffiffiffiffiffiffiffiffiffi
ŝ

1C ŝ

r
ŝ

aCcŝ=lem
1C ŝ

Ge

3aGc

� �
(38)

Here the parameters ŝand a have been defined in (13a)

and (13b). Note that similarly to relations (13a) and (13b),

formula (38) is strictly valid when ŝ[a, or equivalently,

le[1. However, one can start approximately using it when

the variables in (38) have passed the crossover values

defined in (14). Thus relation (38) describes the smooth

transition from entropy to energetic elasticity for crystal-

lizing rubber-like polymers. Note that all the formulae for

amorphous rubbers in Section 4 could be formally obtained

from (38) and similar relations in the limit c/0. Note that



Fig. 3. Schematic plots of strain–stress dependences l(s) for crystallizing

(solid line) and amorphous (dashed line) rubber-like materials.
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due to (37), the formula (15c) that describes the transition

from energetic to CL elasticity is also valid for the case of

crystallizing rubbers in the vicinity lezlem. Comparing the

first two terms in the product in (38) with (13b) clearly

shows that (38) describes the effect of reinforcement in

stress-induced crystallization.

The result of analysis of the hybrid constitutive relation

for crystallizing rubbers is sketched in Fig. 3, where the

strain–stress relations are shown by the solid/dashed lines

for in crystallizing/amorphous cases. The effect of the

strain-induced crystallization is well seen in Fig. 3.

Analysis of another function, le(l), based on the CE’s of

hybrid elasticity resulted in the dependence of the degree of

crystallinity on the total stretching ratio, f(l)Zcle(l)/lem,

sketched in Fig. 4. This plot obtained using modeling (35),

demonstrates the occurrence of a quasi-threshold for onset

of the stress-induced crystallization, because the ‘energetic’

stretching ratio le is noticeable only when the entropic

elasticity is well developed and/or almost saturated.

Both the qualitative predictions in Figs. 3 and 4 seem

realistic as compared to the data in Ref. [1] (ch. 1).
7. Discussion

The present paper develops a model of hybrid

entropy/energetic elasticity on the example of simply

stretching. The model employs a version of bid-spring

model with deformable bids treated as dynamic segments

(DS’s). The extension of bids is attributed to the energetic
Fig. 4. Sketch of dependence f(l) of degree of crystallinity on the

stretching ratio, qualitatively predicted by the hybrid approach.
elasticity dominated inside of DS’s, and is caused by

collective rotational motions of connected monomer units.

The key element in this modeling is evaluation of the

number nd of monomers in dynamic segment. Along with

experimental evaluations of this parameter by neutron

scattering, one of the possible ways of evaluation of nd is

using the kinetic model [9] shown in Appendix A. In due

regard the pioneering Kuhn’s contribution in rubber

elasticity, his choice of segment treated as kinetic unit,

being the same arbitrary as other choices, is worse than

others, because it presents the rigid, a fully stretched arc of

contour chain consisting of CN monomer units, which

contradicts the measurements of kinetic units. More

appropriate approach to this problem was established by

Rouse in non-equilibrium statistical mechanics of polymer

chains [4,5]. In his bid-spring model the bids are treated as

sub-chains with bid mass dependent on the partition, but

with equivalent description of averaged statistical property

(relaxation function), independent of the chain partition in a

particular frequency region. The same result, independence

of rubber elasticity modulus on the chain partitioning in the

region of Gaussian statistics shown in (17), is valid for

Gaussian region of rubber elasticity. As mentioned in the

Introduction, recent experimental evidence of the unique-

ness (specified for a polymer) in the partition of bids

allowed the researchers to describe linear relaxation

dynamics of dilute polymer solutions in a very wide

frequency region [6,7]. Hopefully, the same uniqueness

(specified for a polymer) in the partition of chain could

extend the non-Gaussian description of rubber elasticity.

Three different types of elasticity have been taken into

account in formulation of the hybrid CE for amorphous

polymers: (i) entropy type with finitely extendable chains,

(ii) energetic type with finite elasticity known from

description of low molecular weight hard materials, and

(iii) crystal-like very tough elasticity known for minerals

and metals. A scaling approach was developed to evaluate

macroscopic parameters in the theory via microscopic ones.

Some numerical examples of evaluations for PE, PS and PB,

using the kinetic approach [9] briefly exposed in Appendix

A, seem to be realistic. These evaluations show that PS and

PB with the values of nd, more than three times exceeding

CN, have a mutual feature, very large side blocks in the

chain, e.g. for PS, the molecular weight of this block C6H5 is

almost 3/4 of the molecular weight 104, of the monomer

unit. The physical reason for these effects is unknown.

This paper also developed a model of strain-induced

crystallization in crystallizing rubbery polymers, based on

the assumption that in crystallizing polymers, highly

oriented macromolecules could collapse in the needle-like

crystals. It was shown that there is an energy gain in this

strain-induced crystallization. Then the phenomenological

type of modeling has been employed that treats the stress–

strain behavior of a polymer crystallizing under force

similarly to the filled polymers, with reinforcement effect

caused by the needle-like rigid crystals.
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The equilibrium type of modeling presented in this paper

could be applied to more detailed description of large elastic

deformations in amorphous and crystallizing rubbers and

also could be useful for evaluations of rubber strength.

The non-equilibrium effects, such as relaxations (for

cross-linked polymers), and both relaxation and flow effects

(for not cross-linked polymers above Tg) could also highly

affect the mechanical and optical behavior of amorphous

polymers in rubbery state. In case of modeling the non-

equilibrium properties of crystallizing rubbers, the kinetics

of stress-induced crystallization should also be taken into

account along with relaxations and flow effects.
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Appendix A. Kinetic evaluation of number of monomers

in dynamic segment

The kinetic approach used for evaluation, employs

the rate theory and considers the segmental motion of

macromolecules as an activation process. It means that

macromolecules move by small parts of several

connected monomers, performing very fast collective

crankshaft-type rotations. Because the activated

rotations happen in very small time intervals Dt of

order of nanosecond [12] only one motion in the chain

is probable during this time interval. The activation

barrier En in this motion is proportional to number n of

monomers participating in elementary act of rotation,

because the traveling group of monomers needs to

readjust their conformation to another, ‘hole’ confor-

mation, using the relative rotations in neighboring

monomer links.

Based on this physical picture the probability distribution

of activated rotation of connected group containing n

monomer in a chain of N monomer units is established as:

PNðn; pÞZ pn
ð1KpÞ

½pð1KpNÞ�
; ð0!p!1; nR1Þ (A1)

Here p is the transitional probability of attaching one

monomer to the group. Expression (A1) yields:

XN
nZ1

PNðn; pÞZ 1

We also roughly consider the limit n/1 in (17) as valid,

although it is not true. The average number hn(p)iN over

distribution (A1),

hnðpÞiN Z
1

1Kp
K

NpN

1KpN
(A2)
monotonically increases with growing N, and for very long

chains, N/N, is independent of DP:

hnðpÞiNZ
1

ð1KpÞ
(A3)

The activation energy for transition of n monomers is:

EnZE0n. Here E0 is characteristic activation energy of low

molecular weight pre-polymer. Then the activation energy

of polymer chain with DP equal to N is defined as: E(N)Z
E0hn(p)iN. It is seen that there is finite activation energy

E(N)ZE0hn(p)iNZE0/(1Kp)hEp for ‘infinite’ chain.

Although the parameter p is unknown, this model could be

tested on the example of slow Newtonian flow of polymers

with activation energies measured for polymer homological

serieswith increase inDP. Itwas experimentally found that the

activation energy of viscous flow in the Newtonian region

grows with increasing DP and is saturated at higher values of

DP. Then using (A2) the value pwas evaluated in Ref. [9] as a

fitting parameter in description of experimental normalized

dependences E(N)/EpZEphn(p)iN/hn(p)iN for five polymers.

Here EpZE(N) is activation energy of viscous flow for very

high DP’s.

In paper [9] instead of (A3), the incorrect expression

p/(1Kp) was written. This misprint, however, did not

change values of nd in Ref. [9] because the numerical values

of parameters p are very close to the unity. Surprisingly, the

model also realistically predicts the value ndz2.65 for

PDMS with CNz6–7 [23].
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